支配值数目
时间: 1ms 内存:64M
描述:
已知f[]与g[]两个整数数组,元素都已经从小到大排好序,请写一个程序,算出f[]中比g[]中元素大的对数。换句话说,f[0]比g[]中多少个元素大,f[1]比g[]中多少个元素大等,这些值的总和就是要求的答案。
举个例子,如果f[]中有1,3,5,7,9,而g[]中有2,3,4,7,8。
那么:
f[0]比g[]中的所有元素都小;
f[1]比g[0] 大;
f[2]比g[0]、g[1]、g[2]大;
f[3]比g[0]、g[1]、g[2]大;
f[4]比g[0]、 g[1]、g[2]、g[3]、g[4]大;
所以答案是0+1+3+3+5=12
输入:
第一行为两个整数m, n(1≤m, n≤1000),分别代表数组f[], g[]的长度。
第二行有m个元素,为数组f[]。
第三行有n个元素,为数组g[]。
输出:
输出支配值。
示例输入:
5 5
1 3 5 7 9
2 3 4 7 8
示例输出:
12
提示:
参考答案(内存最优[748]):
#include<stdio.h>
main()
{
int f[1000],g[1000],m,n,i,j,s = 0;
scanf("%d %d\n",&m,&n);
for(i=0;i<m;i++)
{
scanf("%d",&f[i]);
}
for(i=0;i<n;i++)
{
scanf("%d",&g[i]);
}
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
if(f[i]>g[j])
{
s++;
}
}
}
printf("%d\n",s);
return 0;
}
参考答案(时间最优[0]):
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
int main()
{
int n,m;
cin>>m>>n;
int i,j;
int sum=0;
int a[1002],b[1002];
for(i=1; i<=m; i++)
cin>>a[i];
for(j=1; j<=n; j++)
cin>>b[j];
j=1;
for(i=1; i<=m; i++)
{
while(b[j]<a[i])
{
if(j<=n)
j++;
if(j==n+1)break;
}
sum+=j-1;
}
cout<<sum<<endl;
return 0;
}
题目和答案均来自于互联网,仅供参考,如有问题请联系管理员修改或删除。